Glutathione is involved in the granular storage of dopamine in rat PC 12 pheochromocytoma cells: implications for the pathogenesis of Parkinson's disease.
نویسندگان
چکیده
Parkinson's disease (PD) is characterized by degeneration of dopamine (DA)-containing nigro-striatal neurons. Loss of the antioxidant glutathione (GSH) has been implicated in the pathogenesis of PD. Previously, we showed that the oxidant hydrogen peroxide inhibits vesicular uptake of DA in nigro-striatal neurons. Hydrogen peroxide is scavenged by GSH and, therefore, we investigated a possible link between the process of vesicular storage of DA and GSH metabolism. For this purpose, we used rat pheochromocytoma-derived PC12 cells, a model system applied extensively for studying monoamine storage mechanisms. We show that depletion of endogenous DA stores with reserpine was accompanied in PC12 cells by a long-lasting, significant increase in GSH content the extent of which appeared to be inversely related to the rate of GSH synthesis. A similar increase in GSH content was observed after depletion of DA stores with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine. In the presence of alpha-methyl-p-tyrosine, refilling of the DA stores by exogenous DA reduced GSH content back to control level. Lowering of PC12 GSH content, via blockade of its synthesis with buthionine sulfoximine, however, led to a significantly decreased accumulation of exogenous [3H]DA without affecting uptake of the acetylcholine precursor [14C]choline. These data suggest that GSH is involved in the granular storage of DA in PC12 cells and that, considering the molecular characteristics of the granular transport system, it is likely that GSH is used to protect susceptible parts of this system against (possibly DA-induced) oxidative damage.
منابع مشابه
Stimulation of dopamine biosynthesis in cultured PC 12 phaeochromocytoma cells by the coenzyme nicotinamide adeninedinucleotide (NADH).
The activity of the tyrosine hydroxylase, the enzyme which is diminished in the brains of Parkinson patients, has been measured in cultured PC 12 rat phaeochromocytoma cells. In the same way dopamine content in the medium after incubating these cells with or without NADH was assayed. The experiment shows that NADH is able to increase the activity of the tyrosine hydroxylase and dopamine - produ...
متن کاملP 124: Decrease Signs Parkinson`s Disease with DOPAMINE in Apple
After Alzheimer's disease, Parkinson's disease is the most common nerve-damaging disease. Parkinson's is a progressive and chronic disease where cells secrete dopamine-cut black flesh and in the absence of dopamine in the brain destroyed the irregular body movements. Man eats the food that causes the formation of the neurotransmitters. Tthree neurotransmitters: dopamine, serotonin, norepinephri...
متن کاملStrength-endurance training with olive oil consumption on motor performance and oxidative stress level in the brain of male parkinsonian rats.
Introduction: Parkinson's disease is a chronic brain disorder that occurs as a result of the loss, reduction or damage of dopamine-producing nerve cells in the substantia nigra located in the midbrain. The purpose of this study is to determine the effect of 8 weeks of strength-endurance training with olive oil consumption on motor performance and oxidative stress level in the brain of male park...
متن کاملEffect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease
Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...
متن کاملProtective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells.
Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 19 شماره
صفحات -
تاریخ انتشار 1996